5 Cl“—blowup solution to inviscid flow

We recall the vorticity-stream formulation of the 3D Euler flow:

1
§8tw+u-Vw:w~Vu,

—A¢:W;
u=V X1.

5.1 Formulation

Particularly, for the axisymmetric flow without swirl, the formulation is transformed as

following under cylindrical system for in variables (r,z3,t):'!

r

1
—i&tw + U 0w + uPdsw = u—w,
r

;

1 1
T2 + 00 — S50 + Do = —w,

(") = (O, 0,0~ ).

Moreover, if we set the a—related spherical coordinate:

p=1/r>+ 23 tanf = %,R:pa,

and let w(r,z3,t) = QR,0,t),%(r,x3,t) = p>U(R,0,t), then the spherical form is
1
5&9 + U(P)0Q2+ V(¥)aDgQ) = R(V)Q,
L(V) = =4,
where the linear operators involved are defined as
U:=-3Id—aDg,V = 0y — tan b,
1
R:=——(2sinf + asinfD, + cos00y) ,
cos 6
L:=Lg+ Ly = (a®’D}% + a5+ a)Dg) + (9p + Op(tan §-) — 61d).

It is noticeable that sin 26 is in the kernel of Ly and sin 6 cos? 6 is in the kernel of L}, i.e.

Lo(20) = 0 and (Lo, sinfcos?6) ,, = 0,7f € L3([0, 2)).
2

HTndeed for these equations, w, 1) correspond to the angular component in the cylindrical system of the
vorticity and stream respectively.
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Following we will construct angular weights according to these facts. Now let z = W
and consider the self-similar ansatz as:

1 1

Q(R,0,t) = mF(z,G)AI’(R 0,t) = =01t

d(z,0).

Substitute them into the spherical form (5.1), then we obtain the profile equations:

{(1 W) F + (1+ p)(1+ AN D, F + 2U(®)9sF + 2V (®)D,F = 2R(P)F, 5.2

a®D,® + a5+ a)D,® + 9;® + Jy(tan @) — 6O = —F.

5.2 Weighted Sobolev spaces

Following we will introduce some weighted spaces which suit our topic. Define the radial
weight, angular weight and weak angular weight respectively as

(1+2)2
22

w,(z) = ,wy = (sin 0 cos® 0) "%, vy = (sinf cos? #) "2

with v = 1+ & and n = 5. Now we define H*([0,00) x [0, 5]) and W->([0, 00) x [0, 5])

' 2
as closure of C2°([0,00) x [0, 5]) in the following norms respectively:

113 = S|P fwavs| 5, + S | DiDfwaws,

i<k i+5j<k,j>0
1l = ZHDZ DY

i+35<l,j>0
where D, = 20,, D, = (z+1)0. and Dy = sin(260)0y. We will show that

520

Dl
a a + sin 20

LOO

1
(I)s = —¢in 29L12F
4o

is the main singular term of ® during elliptic estimate in weighted spaces(see Theorem 5.5
and its remark), where the operator Lis is defined by

Liaf(z / / wde ' K(6) = 3sin 6 cos® 6.

Consequently, let d = & — ®,, then the vorticity profile of (5.2) can be written as

1 1
(1 w)F + (14 ) (1 + N)D.F + 5-U(sin20L1sF)0pF + 5V (sin 20L1aF) D F

- %R(sm 2L, F)F = —2U(9)9yF — 2V (®)D,F + 2R(®)F.
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As the explicit form of U, V| R and ®, are already given above, we can calculate out
U(sin20LoF) = — 3sin 20 L1 F 4 asin 20(F, K)j,
V(sin 20 L5 F) =2(cos 20 — sin® §) L5 F,
R(sin20L 1, F) =2L1,F — 2asin® 0(F, K ).

Here Lis—related terms will be the main difficulties, so we preserve them in the left hand
and write the equation as

1 3
F+D,F——FL,F— (2—L12FD9F — (cos 20 — sin? 9)L12FDZF) = —uF—(pu+A+p\)F+N,
a a

where the remain term

1 A J RPN 1 1

N =——U(®)F — ~V(®)D,F + —R(®)F — (F,K)y | =DgF + (sin”’ ) F | .
2a 2 2a 2

The first part (except the transport terms) is the fundamental model with explicit solution

') 2z
c* m’

F.(2,0) =«

where ¢* = fog K(0)T'(6)df and T'(§) = (sin @ cos? §)5 (see Theorem 5.2). So we’d like express
F = F, + g and then

1 1 3
(5.3)
with
3 3
No ——gL12g + 2—(L12F VDo F, + — o (L12g) Dy F — (cos 20 — sin® §) Ly F D, F,
Ni=—pg—(u+A+p\)D.g

Notice that
* [T FO)K©O) 2 ,
LioF, = dofd
12 a/z /0 c* (14 2")? :

/°° 2 & 2a
= ——dy = —.
. (14 2)? 1+2

Consequently, the left hand side of equation (5.3) can be expressed explicitly as

3
——D
Lrg T 5 P09
with the operator Lr defined by
r 2z 2 F 2z
Lrf=Lf—-———L + D, — L
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To estimate the term —Dgg, we give some observation first: Notice the right hand side of
(5.3). We can calculate out that

21101 (6) A+ A+ pA 2 LA A+ pX 22
P 1+ —9
c* 1 (1+2)? poo (I+2)?

The first term is eliminated if we set g+ (U + A+ pA) =0 <= A = % In this case, we
have

—pF=(pAA+pA) D Fy = —

3 222
Lrg 152 0g = a,u (1 BE + N, + N + N,

Motivated by this argument, we introduce a projector P on H([0,00) x [0,7/2])(P?* = P
since it holds Lio(P(f))(0) = 0 for any f):'?

B(f)(2.60) = f(2,0) — )2

¢ (1+42)3

Li2f(0).

Consequently, we get
3 re) 222 3
Llg:=Lrg—P——Dyg) = Lis | ——Dgg | (0) — 2 ; :
rg rg <1+Z 99> p (1+Z>3< (1+ 09)( ) au>+N +N 4Ny

Moreover, we notice that Li»g9(0) = Li12(N.)(0) = 0. Under this condition, the equation
can be transform as following form

LLg=PWN, + N +Np),

if we let
Lis (—2—Dyg ) (0) =201 = —Lua(N +N)(0) = pt = —Lus [N+ Ny + ——Dyg ) (0)
2\ 1, 09 M= 12 0 M_Qa 12 0TI, 09 .
Finally, we conclude our discussion as the following theorem:
Theorem 5.1. Suppose F' = F, + g is a solution of system (5.2) with
re) 2z
F.(z,0) = —_—. 4
(=0 =0y (54)
Then g satisfies the following equation
LLg =P(N. + N + Np),
Ne=—pg— (p+ X+ pA)D.g,
N =2R(®)F — 2U(®)9yF — 2aV (®)D.F
1
—(F,K)g (§D9F + (sin’ 9)F> : (5:5)
No =2 gLig + —— DyF. + > (L1ag) Do F
0_ag 129 1+ 2 oL« T 50 129) e
— (cos 260 — sin® §) L1, F D, F,
12Notice fooo (Li—zz)gdz = —%%’O = 1. Particularly, the image of the projector is the functions f which

satisfies L12(f)(0) = 0.
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if we assume the coefficient relation and restriction condition as

1 3 o B
= %ng <./\/ + No + ngg) (0),A = T+ n and Lys(g) = 0. (5.6)

In the further investigation, we will establish the coercivity of the transport operator
LT (see Theorem 5.4) and elliptic estimates of ® (see Theorem 5.5) in the weighted space.
Applying these two, a priori estimate will be obtained for g. Then the existence follows
from a compactness argument.

5.3 Fundamental model

The idea of seeking for a fundamental model is inspired by the former work of Elgindi, where
he neglects the transport term and focuses on the vortex stretching. Respectively in our

case, we eliminate the term U (V)0 F, V (¥)D,F and obtain

1

5@9 = R(®)Q,

LY = —Q.
However, this model is not explicit enough that we can give out a precise solution. And the
idea is analyze the singularity of ¥ and observe that

1
U=—-L10= o sin 20 L15€) + low order terms.
«

Substitute the singular part into stretching operator:

1 1
R(D)Q = 5l —5 sin? 0 (Q, K), .

As the later term is of low order (eliminated by Cauchy-Schwartz). Our main concern is
now degenerated as the following form:

1

The following theorem gives a explicit self-similar solution for the equation (5.7).

Theorem 5.2. The fundamental model (5.7) possesses a family of self-similar solution of

the form
1 R 1 1) R
Q :—F* T T —F*T P
(7.9.8) = 7 (1—t 9) 1—¢" e " (1—t>

where F,, = (12+—ZZ) and ¢ = fog K(0)T'(0)dh. Here T'(0) is some undetermined function

satisfies KT' € Lj.

Remark 5.1. Particularly, F, satisfies the profile equation F, + D,F, = éF*ngF* for

variable z = %.

Proof. Check later. O
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5.4 Transport coercivity

We define the following quantities and operators: Suppose the undetermined z € [0, 00), 6 €
[0, %]. And denote the following coefficients:

« 99
Doy =14 — n=—.
a € (0,1),y + 170" = To0

Now suppose f(z,#0) and angular kernels

K(#) = 3sinf cos 0, T'(0) = (sin 6 cos §%)3,

Liaf (2 / / UG 9 0/>d9d’

then we set operators:

Lf(0) =] +D.f - Hfz
er(z,e) =Lf - g : (1_372’2)21—/1#7
L f(26) =Lof — P (%Def)

where D, = 20, Dy = sin(20)0y,

and P is a projector defined by
r 222

Pf(z,0) = f— —
f(Z, ) f C* (1+2) 12f( )

There the image of PP consist with functions g = Pf satisfies L12(g)(0). Indeed, we can check
that ( ,

re) 2z

L = K(0 dd =1,
12(0* (1+z)3>(0) /0 1+z / ®)/e

and then

L12g(0) = L12(Pf)(0) = L12f(0) — L12f(0) =

Moreover, we assume the following radial and angular weights

B (1+ 2)?

w, =

L wy = sin(260) 72, vy = sin(260) 2.

22

Lemma 5.1. Some important relations:
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1. Lo Lp = Lo Ly
2 Lfw. = fuw. + D.(fw.).
Proof. The first is directly from the Tricomi identity:
Lio(fL12g + gLi2f) = Liaf L2g.

The second is from the fact that w, satisfies the following equation:
1
Dzwz + —ngF*wz =0.
Q@

And consequently,

(LuF) fu.
=fw, + D,(fw,) — fD,w — g(ngF*)fwz
=fw, + D,(fw,).

Lfw, =fw,+ D, fw, —

Before the further discussions, we lists some facts related to the kernel elements:

Proposition 5.1. 1. ¢* = 3f0% (sinf cos?0)'*5d0 € (52,1) for a € (0,1);

2.

r 7.

== K <5

3. |Del’| < 2al.

The following theorem tells the coercivity of above transport operators.

Theorem 5.3. Suppose Lis, L, Lr, LL are defined as above. Then we have

[z fwll e < 4l fw:] 2,

1
(Crfuws, fws) 2 > 4l w7,

1
(LF fwz, fw.) > ngwzHiz — 100|| Do fuw- 72

1

(DW(CE Py Dawae) o > (5 = @) [IDofwwalls = 10l o

2

)
L2

1 1
(['lefwzve, f'leUQ)LQ > ng’LUZU)QHiQ — 105 ;L12f

(5.8)
(5.9)
(5.10)

(5.11)

(5.12)

1
(DZ('Clj:f)szGa DwaZU@)LQ > ZHszszt‘)Hi? - 108||D9fszZ||?L? - 108||fwzw9||i27 (5-13)
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Proof of (5.8). We notice that

1 4
wﬁ:( +4Z) =144 46224423 +27 14622 +2
z

—4

Then it is enough to show that
k
H27L12f
L2

k :
< 4Hz’5fH , VK is even.
Lz,@

Proof of (5.11). We notice that

3 2 22 3
Lif=Lf— ?Def— —T (mhzf’i‘m[/ (1+ Def)( ))

We denote Af(z) the bracketed term in the last term, then it comes

(DO(ng)wzwea Defwsz)LQ

w2
= (ﬁ(u}gl)gf)wz,’LU@I)@]CU)Z)L2 — g (5111(2(9) (I+55 10 —1 _: DG((DGf)2)>
z 12

2 (™ [? 2.2

- = Dyl'- Af - Dy f - wiwj dfdz
¢ Jo Jo

w?

1+ 2

> Dl + 5 (ansin(26) ), 1% (D))

L2

2
= IDelwoll 31| Afw:l| || Do frozwoll 2

1 2 (0% . _(1+ﬂ) wz 2
ZZHDefwzweHLz — o2 sin(20)"" "0, ] Z(Def)

L2
1

— (4ma)2 - 39[| fw: | 12 || Do frozwel| 12

1

2(z = )| Dg fwwpl[72 — 107 fu| 2.
where we have apply the following estimates for Dyl and Af: O
Proof of (5.12). O
With the above estimates, it is natural to define the weighted Sobolev space as following:
k
115 = Y|P fwvofe + > | DED) .|| (5.14)
i=0 i+j<k,j>0
Then we claim the standard coercivity of LL in H*:

Theorem 5.4. Fiz oo < 107" and k € N. Then there exists Cy, that for any f € H*,
(LEF, £ = Cill £l
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5.5 Elliptic estimate

We recall the profile equation of stream equation derived in Section 77:
L.® 4 Ly® = o?D*® + a(5 + ) D, ® + 020 — Jy(tan #P) + 6O = —F, (5.15)
with Dirichlet boundary conditions

O(2,0)= <z g) — 0 and ®(2,0) — 0 as z — 0, (5.16)

The main result of this section is the following H*—elliptic estimates:

Theorem 5.5. Fiz k > 2, then there eizsts Cy, > 0 such that for any o € [0,1/4],v €
[1,5/4], if F € H* satisfies the following orthogonal condition

F.(z) = (F(z,0),sin0 cos® 0)L§ =0, (5.17)
then there exists a unique H*—solution ® to (5.15)-(5.16) on [0,00) x [0, 7/2], which satisfies
a?||D2||,. . + (|05 @], < CullF |l (5.18)
Remark 5.2. Notice that sinf cos® @ is the unique adjoint kernel of Lg, i.e.
(Lgf,sinfcos®f)g = 0,Vf € L2.
(the detailed calculation is as following:

((‘)(ff — Op(tan O f) + 6, sin 0 cos” H) L2 = (f (07 + tan 69, + 6)(sin O cos® H))
= (f, —7sin6 cos® 6 + 2sin®  + tan f(cos” § — 2sin” § cos ) + 6sin f cos” 6) 2 =0.

2
Lg

) Thus the condition (5.17) is necessary to eliminate some singularity in the elliptic esti-
mates. Indeed, we have the following estimate if it does not hold:

o?|| D2l +

1
05 (@ —4osin 29L12F>

< Ckl| Fl|ygn (5.19)
’Hk

The proof is listed in the last of this section.

Remark 5.3. It is noticeable that ® is linearly dependent on F. Indeed, we see that ® is
the image of F on the following operator:

1
—L_l - 4— sin 29[/12.
(07

We’d like denote (i>f =—L7'f - i sin20Lysf in the further discussion. Particularly, ® =
®r in our case.
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Now we sketch the proof the Theorem 5.5. First the existence and uniqueness of the
L?*—solution ® comes from the standard LP-theory as the orthogonal condition (5.17) holds?.
Similarly with the proof of transport coercivity, we first establish a L?— estimate (without
weights), and apply it to derive a H2—elliptic estimate, after which the H*—case follows
from a induction. During the proof, some angular Hardy-type estimates will be used(check
them in the appendix 77).

Lemma 5.2 (L%-estimate). Suppose ® is the unique solution obtained above, then
|ow®| ,+ ll632]| 2 + a?| D20 . < 1001 F |2, (5.20)

where ® = ®/ cos .

Proof. Step 1: First we show that ®,(z) = (®(z,6),sin 6 cos? 9)L§ = 0. Multiplying the
both side of (5.15) with sin § cos®  and integrating in 6, we can see

@’D*®, + a5+ a)D.®, = (L.P,sinfcos 0) =
This is exactly a ODE with characteristic equation
XA =1 +ab+a)d=0= )\ =0, = —5/a.
Consequently, we have solution formulated as
D, (2) = ¢y + ez

Moreover, the Dirichlet condition ®(z,60) — 0 as z — oo implies ¢; = 0, and 22®|,_, =
07implies ¢o = 0. In conclusion, we get ®,(z) = 0.

Step 2: We derive the L?—estimate for dy®. Multiplying the both side of (5.15) with ®
and integrating in (z,0), it comes

(5+a)

1
0| Do}z — | @72 + 1972 + 1196172 + 1@/ cos Ollz2 = 6ll[ 72 = (F,®),

(Just a bunch of integrations by part:

D29, ®), / / 2POIP = — | / '/'(2.:@ + 220,9)0,P
= — // (20.(®%)) — // (2*020)

- (HDN’ = 197117.)

(()()(I) (I)) = —[|0p® “;l

: L rr o 1
(Op (tan 6P) , ) = — // tan 000y d = —3 // tan 00y (P°) = 5”

(D:(I)T (I)) = — 7H(I)
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Notice the negative signs are shifted to the right side.) Consequently, since —a? + a(5 +
a)/2 =a(b—a) >0, we get

10®]172 — 611 @II72 < [I1F 21Dl 2 (5.21)
Following we use the Fourier expansion of ®:'3
4 s
o = Z@ )sin(2nd), ®,(z) = — /2 (2, 0)sin(2n0)do.
T™Jo
n>1

Then since {sin2nf,cos2nf} is a family of orthogonal basis of L*([0,7/2]) with norm
||sin QnHHig = ||cos 2n9|\i§ = /4, we have

2
s
10017, =D 2n®,(2) cos2nb| =Y 4n?||®, ][, ||cos 2na||7, = 1 > 4n?|| @, |[7.,
n>1 L2 n>1 n>1
2
. m
—6[|®|7. = — 6||>_ Pn(z)sin2nf|| = —126y|@n\|§2.

Since the coefficient is negative for n = 1, we’d like to write (5.21) as the following form:

4
> (4n® = 0)|[@nll7z < 20|17z + —[1F) a2l o (5.22)

n>2

To handle the term ||®,]|3,, we notice that'*
_ _ . 2 _ % . 2 .
0=0,(2) = (®(2,0),sinf cos H)Lg = Z D, (2) /o (sin 0 cos” 0 sin 2nH)do

n>1

4n cos(n) 4n
= b, = 1" d,,.
Z 16n* —40n2 + 9 Z( ) (4n? —9)(4n? — 1)

n>1
This implies

in 2 ) 225n2 )
ol <3 (2 e <4n2_1>> 0,1 = e

n>2 n>2

—Z (4n? — 9)2(dn? — )2||<I’n||Lg SZW—_WH%H@

n>2
Z 1072 <ZII‘1> 17

n>2 n>2

13 After Fourier expansion we can transform the derivatives (to #) into some algebraic operation and then
handle them easily. The idea is similar with Fourier transform.
“Indefinite integral see Wolfram.
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https://www.wolframalpha.com/input?i2d=true&i=Integrate%5B%5Csin+%5C%2840%292nx%5C%2841%29%5Csin+x+Power%5B%5C%2840%29%5Ccos+x%5C%2841%29%2C2%5D%2C%7Bx%2C0%2CDivide%5B%5Cpi%2C2%5D%7D%5D

We substitute it into (5.22), then

4
Z (4n* —8) H%Hig < ;HFHLZH(I)HLQ'

n>2

And then we have

D> + DIallGy = >0 + DIl + 2|07

n>1 n>2
<Y (P4 3)[[0,] 72 <D (4n® = 8) [|,l[72
n>2 n>2
4 2 1 9o 40
<[Pl el @l < I1FIE + 11217
1 2 2
<SIFIG + D 1l

n>1

Finally, we see

™ ™
1052117 = ZZ‘WHfanig = ZHFHiz = [100®] 2 < [1F| 2-

n>1

Step 3: Using the bound for 0y® and Hardy-type inequalities, now we establish the estimate
for 93P, 0p(®/ cos f) and D?® respectively. First we test (5.15) with 97® and get

a(b+ «)

o”| D.0p||72 — o® [ 9p® |72 + 5

185®[[2 + ||02|%,
_6H89®Hiz — /E 89 (tan 9@) (992(13 = — (F, 83(1))[? .
0

The main difficulty is the last term on the left side. Following we will show that it will be
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controlled by ® = ® / cos @. Integrating by part to eliminate the high order term:

— /0% Op (tan ) 3 ® df = — /0% <sin <i>> 0; (cos 0&)) e

__ / " (50000 + o563 (— cos 0D — 25in 00y + cos 605
0
= /2 (2 sin® 0(89&3)2 — sin 6 cos Hﬁgéag&) + cos? D% + 3sin 0 cos 0D P — cos? 9@83@) do
0

— /2 (2 sin” 0(0p®)* + %89(sin0 cos 0)(9p®)* + cos? H P>
0

+3sin 0 cos PPy P + cos? 9(89@)2 — 2sin 6 cos 0@89@) do

™

— / ’ <2 sin” 0(0p®)? + %(00828 — sin% 0)(0p®)? + cos? D2
0

1 ~ ~
—5((:os2 0 — sin® 0)®* + cos? 0(86@)2) do

(35502 e
_/O <2(agq>) +2<I>)d9.

Substitute this into the test equation and neglect the radial terms(as them keep positive),
then we finally get:

|oza|? +§Ha <1>H2 <6)|9y0| +1H<1>H2 — (P, 020)
0 L2 2 0 2= 0 L2 9 12 » Yo 12
1
§11||89@||iz+5||39(1>||ig+§||862<I>||,

which yields
2 ~ 12
|3l7. + 3|2, < 281F 3.

The radial part can be obtained by a similar argumentaA. O
Next we give out the proof of k = 2 case for Theorem 5.5.

Proof of Theorem 5.5. We will add it later. O

Proof of Remark 5.2. Recall that sin 26 is in the kernel of Ly = 92 — dp(tan 0-) + 61d since

07 (sin 260) — Op(tan 0 sin 26) + 6sin 20 = —4 sin 20 — 2sin 26 + 6sin 26 = 0.
Consequently, we consider ® = & — g(z) sin 260 such that

Lo =Ld — L(gsin20) = F — L,gsin20 = F.
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Now it remains to determine g such that F, = (F ,sinflcos?f) = 0, and then the elliptic
estimate holds for ® immediately. Accordingly, g is determined by

(F L. g sin 26, sin 0 cos® 9) 2 =0,

which yields:

™

()

This is a linear ODE and we can solve it via integral factor:

15 & P
o) == g | st sy
0

~1
1
sin 26 sin @ cos® 9d9> (F, sin @ cos? 6)9 = 45F )

402

:—/ / sa " F,(s)dsdp

= - —z a/ pa " F(p)dp — —

:g__/ / F- 3SIHQCOS29d6d

We can easily prove that g is of low order with estimate ||g||;. < C||F| ;.. And the later
term

> 2 F(Z,0)K(0
LigF = / / Md@'dz', K(0) = 3sinf cos® 0,
0 z
is the main singularity. O

5.6 A priori estimate

In our final calculation we aim to get a priori estimate for g satisfies L12g(0) = 0. We recall
that

r 222
LLTg=PNy+ N +N.) =Ny + N + N, — Lip(Ny MO S
And consequently,
222

(£19:9) g5 < |Nos 9| + [N 9)paa] + [(Nos 9)a | + [ L12(No + N)(0)]

We will finish the following estimate respectively:

(No, 9l < C(P|gllys + 02 lgll5s + a7 [lgll50),

(N, )l < CPlglls + 02 lgll5s + a2 [lgll50),
1l < € (a+a gl +aHllgl)

_3 _5
[Ny gl < Clulllgls < © (allglizes + 0~ *lglhallglies + =gl )
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And in conclusion,
1 _3 3 5 4
lgll5s < (L9, 9)2s < C (azllgllm +azlgllz + a2 |gllyallglze + a2 I\gl\m) -

Particularly, we shall see that [|g||,.: < Cai — gl < Ca?.

5.7 Appendix

Projector
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